mirror of https://github.com/Chizi123/.emacs.d.git

Chizi123
2018-11-19 a4b9172aefa91861b587831e06f55b1e19f3f3be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
;;; dash.el --- A modern list library for Emacs  -*- lexical-binding: t -*-
 
;; Copyright (C) 2012-2016 Free Software Foundation, Inc.
 
;; Author: Magnar Sveen <magnars@gmail.com>
;; Version: 2.14.1
;; Package-Version: 20180910.1856
;; Keywords: lists
 
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
 
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
 
;; You should have received a copy of the GNU General Public License
;; along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
;;; Commentary:
 
;; A modern list api for Emacs.
;;
;; See documentation on https://github.com/magnars/dash.el#functions
;;
;; **Please note** The lexical binding in this file is not utilised at the
;; moment. We will take full advantage of lexical binding in an upcoming 3.0
;; release of Dash. In the meantime, we've added the pragma to avoid a bug that
;; you can read more about in https://github.com/magnars/dash.el/issues/130.
;;
 
;;; Code:
 
(defgroup dash ()
  "Customize group for dash.el"
  :group 'lisp
  :prefix "dash-")
 
(defun dash--enable-fontlock (symbol value)
  (when value
    (dash-enable-font-lock))
  (set-default symbol value))
 
(defcustom dash-enable-fontlock nil
  "If non-nil, enable fontification of dash functions, macros and
special values."
  :type 'boolean
  :set 'dash--enable-fontlock
  :group 'dash)
 
(defmacro !cons (car cdr)
  "Destructive: Set CDR to the cons of CAR and CDR."
  `(setq ,cdr (cons ,car ,cdr)))
 
(defmacro !cdr (list)
  "Destructive: Set LIST to the cdr of LIST."
  `(setq ,list (cdr ,list)))
 
(defmacro --each (list &rest body)
  "Anaphoric form of `-each'."
  (declare (debug (form body))
           (indent 1))
  (let ((l (make-symbol "list")))
    `(let ((,l ,list)
           (it-index 0))
       (while ,l
         (let ((it (car ,l)))
           ,@body)
         (setq it-index (1+ it-index))
         (!cdr ,l)))))
 
(defmacro -doto (eval-initial-value &rest forms)
  "Eval a form, then insert that form as the 2nd argument to other forms.
The EVAL-INITIAL-VALUE form is evaluated once. Its result is
passed to FORMS, which are then evaluated sequentially. Returns
the target form."
  (declare (indent 1))
  (let ((retval (make-symbol "value")))
    `(let ((,retval ,eval-initial-value))
       ,@(mapcar (lambda (form)
                   (if (sequencep form)
                       `(,(-first-item form) ,retval ,@(cdr form))
                     `(funcall form ,retval)))
                 forms)
       ,retval)))
 
(defun -each (list fn)
  "Call FN with every item in LIST. Return nil, used for side-effects only."
  (--each list (funcall fn it)))
 
(put '-each 'lisp-indent-function 1)
 
(defalias '--each-indexed '--each)
 
(defun -each-indexed (list fn)
  "Call (FN index item) for each item in LIST.
 
In the anaphoric form `--each-indexed', the index is exposed as symbol `it-index'.
 
See also: `-map-indexed'."
  (--each list (funcall fn it-index it)))
(put '-each-indexed 'lisp-indent-function 1)
 
(defmacro --each-while (list pred &rest body)
  "Anaphoric form of `-each-while'."
  (declare (debug (form form body))
           (indent 2))
  (let ((l (make-symbol "list"))
        (c (make-symbol "continue")))
    `(let ((,l ,list)
           (,c t)
           (it-index 0))
       (while (and ,l ,c)
         (let ((it (car ,l)))
           (if (not ,pred) (setq ,c nil) ,@body))
         (setq it-index (1+ it-index))
         (!cdr ,l)))))
 
(defun -each-while (list pred fn)
  "Call FN with every item in LIST while (PRED item) is non-nil.
Return nil, used for side-effects only."
  (--each-while list (funcall pred it) (funcall fn it)))
 
(put '-each-while 'lisp-indent-function 2)
 
(defmacro --each-r (list &rest body)
  "Anaphoric form of `-each-r'."
  (declare (debug (form body))
           (indent 1))
  (let ((v (make-symbol "vector")))
    ;; Implementation note: building vector is considerably faster
    ;; than building a reversed list (vector takes less memory, so
    ;; there is less GC), plus length comes naturally.  In-place
    ;; 'nreverse' would be faster still, but BODY would be able to see
    ;; that, even if modification was reversed before we return.
    `(let* ((,v (vconcat ,list))
            (it-index (length ,v))
            it)
       (while (> it-index 0)
         (setq it-index (1- it-index))
         (setq it (aref ,v it-index))
         ,@body))))
 
(defun -each-r (list fn)
  "Call FN with every item in LIST in reversed order.
 Return nil, used for side-effects only."
  (--each-r list (funcall fn it)))
 
(defmacro --each-r-while (list pred &rest body)
  "Anaphoric form of `-each-r-while'."
  (declare (debug (form form body))
           (indent 2))
  (let ((v (make-symbol "vector")))
    `(let* ((,v (vconcat ,list))
            (it-index (length ,v))
            it)
       (while (> it-index 0)
         (setq it-index (1- it-index))
         (setq it (aref ,v it-index))
         (if (not ,pred)
             (setq it-index -1)
           ,@body)))))
 
(defun -each-r-while (list pred fn)
  "Call FN with every item in reversed LIST while (PRED item) is non-nil.
Return nil, used for side-effects only."
  (--each-r-while list (funcall pred it) (funcall fn it)))
 
(defmacro --dotimes (num &rest body)
  "Repeatedly executes BODY (presumably for side-effects) with symbol `it' bound to integers from 0 through NUM-1."
  (declare (debug (form body))
           (indent 1))
  (let ((n (make-symbol "num")))
    `(let ((,n ,num)
           (it 0))
       (while (< it ,n)
         ,@body
         (setq it (1+ it))))))
 
(defun -dotimes (num fn)
  "Repeatedly calls FN (presumably for side-effects) passing in integers from 0 through NUM-1."
  (--dotimes num (funcall fn it)))
 
(put '-dotimes 'lisp-indent-function 1)
 
(defun -map (fn list)
  "Return a new list consisting of the result of applying FN to the items in LIST."
  (mapcar fn list))
 
(defmacro --map (form list)
  "Anaphoric form of `-map'."
  (declare (debug (form form)))
  `(mapcar (lambda (it) ,form) ,list))
 
(defmacro --reduce-from (form initial-value list)
  "Anaphoric form of `-reduce-from'."
  (declare (debug (form form form)))
  `(let ((acc ,initial-value))
     (--each ,list (setq acc ,form))
     acc))
 
(defun -reduce-from (fn initial-value list)
  "Return the result of applying FN to INITIAL-VALUE and the
first item in LIST, then applying FN to that result and the 2nd
item, etc. If LIST contains no items, return INITIAL-VALUE and
do not call FN.
 
In the anaphoric form `--reduce-from', the accumulated value is
exposed as symbol `acc'.
 
See also: `-reduce', `-reduce-r'"
  (--reduce-from (funcall fn acc it) initial-value list))
 
(defmacro --reduce (form list)
  "Anaphoric form of `-reduce'."
  (declare (debug (form form)))
  (let ((lv (make-symbol "list-value")))
    `(let ((,lv ,list))
       (if ,lv
           (--reduce-from ,form (car ,lv) (cdr ,lv))
         (let (acc it) ,form)))))
 
(defun -reduce (fn list)
  "Return the result of applying FN to the first 2 items in LIST,
then applying FN to that result and the 3rd item, etc. If LIST
contains no items, return the result of calling FN with no
arguments. If LIST contains a single item, return that item
and do not call FN.
 
In the anaphoric form `--reduce', the accumulated value is
exposed as symbol `acc'.
 
See also: `-reduce-from', `-reduce-r'"
  (if list
      (-reduce-from fn (car list) (cdr list))
    (funcall fn)))
 
(defmacro --reduce-r-from (form initial-value list)
  "Anaphoric version of `-reduce-r-from'."
  (declare (debug (form form form)))
  `(--reduce-from ,form ,initial-value (reverse ,list)))
 
(defun -reduce-r-from (fn initial-value list)
  "Replace conses with FN, nil with INITIAL-VALUE and evaluate
the resulting expression. If LIST is empty, INITIAL-VALUE is
returned and FN is not called.
 
Note: this function works the same as `-reduce-from' but the
operation associates from right instead of from left.
 
See also: `-reduce-r', `-reduce'"
  (--reduce-r-from (funcall fn it acc) initial-value list))
 
(defmacro --reduce-r (form list)
  "Anaphoric version of `-reduce-r'."
  (declare (debug (form form)))
  `(--reduce ,form (reverse ,list)))
 
(defun -reduce-r (fn list)
  "Replace conses with FN and evaluate the resulting expression.
The final nil is ignored. If LIST contains no items, return the
result of calling FN with no arguments. If LIST contains a single
item, return that item and do not call FN.
 
The first argument of FN is the new item, the second is the
accumulated value.
 
Note: this function works the same as `-reduce' but the operation
associates from right instead of from left.
 
See also: `-reduce-r-from', `-reduce'"
  (if list
      (--reduce-r (funcall fn it acc) list)
    (funcall fn)))
 
(defun -reductions-from (fn init list)
  "Return a list of the intermediate values of the reduction.
 
See `-reduce-from' for explanation of the arguments.
 
See also: `-reductions', `-reductions-r', `-reduce-r'"
  (nreverse (--reduce-from (cons (funcall fn (car acc) it) acc) (list init) list)))
 
(defun -reductions (fn list)
  "Return a list of the intermediate values of the reduction.
 
See `-reduce' for explanation of the arguments.
 
See also: `-reductions-from', `-reductions-r', `-reduce-r'"
  (and list (-reductions-from fn (car list) (cdr list))))
 
(defun -reductions-r-from (fn init list)
  "Return a list of the intermediate values of the reduction.
 
See `-reduce-r-from' for explanation of the arguments.
 
See also: `-reductions-r', `-reductions', `-reduce'"
  (--reduce-r-from (cons (funcall fn it (car acc)) acc) (list init) list))
 
(defun -reductions-r (fn list)
  "Return a list of the intermediate values of the reduction.
 
See `-reduce-r' for explanation of the arguments.
 
See also: `-reductions-r-from', `-reductions', `-reduce'"
  (when list
    (let ((rev (reverse list)))
      (--reduce-from (cons (funcall fn it (car acc)) acc)
                     (list (car rev))
                     (cdr rev)))))
 
(defmacro --filter (form list)
  "Anaphoric form of `-filter'.
 
See also: `--remove'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list (when ,form (!cons it ,r)))
       (nreverse ,r))))
 
(defun -filter (pred list)
  "Return a new list of the items in LIST for which PRED returns a non-nil value.
 
Alias: `-select'
 
See also: `-keep', `-remove'."
  (--filter (funcall pred it) list))
 
(defalias '-select '-filter)
(defalias '--select '--filter)
 
(defmacro --remove (form list)
  "Anaphoric form of `-remove'.
 
See also `--filter'."
  (declare (debug (form form)))
  `(--filter (not ,form) ,list))
 
(defun -remove (pred list)
  "Return a new list of the items in LIST for which PRED returns nil.
 
Alias: `-reject'
 
See also: `-filter'."
  (--remove (funcall pred it) list))
 
(defalias '-reject '-remove)
(defalias '--reject '--remove)
 
(defun -remove-first (pred list)
  "Return a new list with the first item matching PRED removed.
 
Alias: `-reject-first'
 
See also: `-remove', `-map-first'"
  (let (front)
    (while (and list (not (funcall pred (car list))))
      (push (car list) front)
      (!cdr list))
    (if list
        (-concat (nreverse front) (cdr list))
      (nreverse front))))
 
(defmacro --remove-first (form list)
  "Anaphoric form of `-remove-first'."
  (declare (debug (form form)))
  `(-remove-first (lambda (it) ,form) ,list))
 
(defalias '-reject-first '-remove-first)
(defalias '--reject-first '--remove-first)
 
(defun -remove-last (pred list)
  "Return a new list with the last item matching PRED removed.
 
Alias: `-reject-last'
 
See also: `-remove', `-map-last'"
  (nreverse (-remove-first pred (reverse list))))
 
(defmacro --remove-last (form list)
  "Anaphoric form of `-remove-last'."
  (declare (debug (form form)))
  `(-remove-last (lambda (it) ,form) ,list))
 
(defalias '-reject-last '-remove-last)
(defalias '--reject-last '--remove-last)
 
(defun -remove-item (item list)
  "Remove all occurences of ITEM from LIST.
 
Comparison is done with `equal'."
  (declare (pure t) (side-effect-free t))
  (--remove (equal it item) list))
 
(defmacro --keep (form list)
  "Anaphoric form of `-keep'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (m (make-symbol "mapped")))
    `(let (,r)
       (--each ,list (let ((,m ,form)) (when ,m (!cons ,m ,r))))
       (nreverse ,r))))
 
(defun -keep (fn list)
  "Return a new list of the non-nil results of applying FN to the items in LIST.
 
If you want to select the original items satisfying a predicate use `-filter'."
  (--keep (funcall fn it) list))
 
(defun -non-nil (list)
  "Return all non-nil elements of LIST."
  (declare (pure t) (side-effect-free t))
  (-remove 'null list))
 
(defmacro --map-indexed (form list)
  "Anaphoric form of `-map-indexed'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list
         (!cons ,form ,r))
       (nreverse ,r))))
 
(defun -map-indexed (fn list)
  "Return a new list consisting of the result of (FN index item) for each item in LIST.
 
In the anaphoric form `--map-indexed', the index is exposed as symbol `it-index'.
 
See also: `-each-indexed'."
  (--map-indexed (funcall fn it-index it) list))
 
(defmacro --map-when (pred rep list)
  "Anaphoric form of `-map-when'."
  (declare (debug (form form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each ,list (!cons (if ,pred ,rep it) ,r))
       (nreverse ,r))))
 
(defun -map-when (pred rep list)
  "Return a new list where the elements in LIST that do not match the PRED function
are unchanged, and where the elements in LIST that do match the PRED function are mapped
through the REP function.
 
Alias: `-replace-where'
 
See also: `-update-at'"
  (--map-when (funcall pred it) (funcall rep it) list))
 
(defalias '-replace-where '-map-when)
(defalias '--replace-where '--map-when)
 
(defun -map-first (pred rep list)
  "Replace first item in LIST satisfying PRED with result of REP called on this item.
 
See also: `-map-when', `-replace-first'"
  (let (front)
    (while (and list (not (funcall pred (car list))))
      (push (car list) front)
      (!cdr list))
    (if list
        (-concat (nreverse front) (cons (funcall rep (car list)) (cdr list)))
      (nreverse front))))
 
(defmacro --map-first (pred rep list)
  "Anaphoric form of `-map-first'."
  `(-map-first (lambda (it) ,pred) (lambda (it) (ignore it) ,rep) ,list))
 
(defun -map-last (pred rep list)
  "Replace last item in LIST satisfying PRED with result of REP called on this item.
 
See also: `-map-when', `-replace-last'"
  (nreverse (-map-first pred rep (reverse list))))
 
(defmacro --map-last (pred rep list)
  "Anaphoric form of `-map-last'."
  `(-map-last (lambda (it) ,pred) (lambda (it) (ignore it) ,rep) ,list))
 
(defun -replace (old new list)
  "Replace all OLD items in LIST with NEW.
 
Elements are compared using `equal'.
 
See also: `-replace-at'"
  (declare (pure t) (side-effect-free t))
  (--map-when (equal it old) new list))
 
(defun -replace-first (old new list)
  "Replace the first occurence of OLD with NEW in LIST.
 
Elements are compared using `equal'.
 
See also: `-map-first'"
  (declare (pure t) (side-effect-free t))
  (--map-first (equal old it) new list))
 
(defun -replace-last (old new list)
  "Replace the last occurence of OLD with NEW in LIST.
 
Elements are compared using `equal'.
 
See also: `-map-last'"
  (declare (pure t) (side-effect-free t))
  (--map-last (equal old it) new list))
 
(defmacro --mapcat (form list)
  "Anaphoric form of `-mapcat'."
  (declare (debug (form form)))
  `(apply 'append (--map ,form ,list)))
 
(defun -mapcat (fn list)
  "Return the concatenation of the result of mapping FN over LIST.
Thus function FN should return a list."
  (--mapcat (funcall fn it) list))
 
(defun -flatten (l)
  "Take a nested list L and return its contents as a single, flat list.
 
Note that because `nil' represents a list of zero elements (an
empty list), any mention of nil in L will disappear after
flattening.  If you need to preserve nils, consider `-flatten-n'
or map them to some unique symbol and then map them back.
 
Conses of two atoms are considered \"terminals\", that is, they
aren't flattened further.
 
See also: `-flatten-n'"
  (declare (pure t) (side-effect-free t))
  (if (and (listp l) (listp (cdr l)))
      (-mapcat '-flatten l)
    (list l)))
 
(defmacro --iterate (form init n)
  "Anaphoric version of `-iterate'."
  (declare (debug (form form form)))
  `(-iterate (lambda (it) ,form) ,init ,n))
 
(defun -flatten-n (num list)
  "Flatten NUM levels of a nested LIST.
 
See also: `-flatten'"
  (declare (pure t) (side-effect-free t))
  (-last-item (--iterate (--mapcat (-list it) it) list (1+ num))))
 
(defun -concat (&rest lists)
  "Return a new list with the concatenation of the elements in the supplied LISTS."
  (declare (pure t) (side-effect-free t))
  (apply 'append lists))
 
(defalias '-copy 'copy-sequence
  "Create a shallow copy of LIST.
 
\(fn LIST)")
 
(defun -splice (pred fun list)
  "Splice lists generated by FUN in place of elements matching PRED in LIST.
 
FUN takes the element matching PRED as input.
 
This function can be used as replacement for `,@' in case you
need to splice several lists at marked positions (for example
with keywords).
 
See also: `-splice-list', `-insert-at'"
  (let (r)
    (--each list
      (if (funcall pred it)
          (let ((new (funcall fun it)))
            (--each new (!cons it r)))
        (!cons it r)))
    (nreverse r)))
 
(defmacro --splice (pred form list)
  "Anaphoric form of `-splice'."
  `(-splice (lambda (it) ,pred) (lambda (it) ,form) ,list))
 
(defun -splice-list (pred new-list list)
  "Splice NEW-LIST in place of elements matching PRED in LIST.
 
See also: `-splice', `-insert-at'"
  (-splice pred (lambda (_) new-list) list))
 
(defmacro --splice-list (pred new-list list)
  "Anaphoric form of `-splice-list'."
  `(-splice-list (lambda (it) ,pred) ,new-list ,list))
 
(defun -cons* (&rest args)
  "Make a new list from the elements of ARGS.
 
The last 2 members of ARGS are used as the final cons of the
result so if the final member of ARGS is not a list the result is
a dotted list."
  (declare (pure t) (side-effect-free t))
  (-reduce-r 'cons args))
 
(defun -snoc (list elem &rest elements)
  "Append ELEM to the end of the list.
 
This is like `cons', but operates on the end of list.
 
If ELEMENTS is non nil, append these to the list as well."
  (-concat list (list elem) elements))
 
(defmacro --first (form list)
  "Anaphoric form of `-first'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each-while ,list (not ,n)
         (when ,form (setq ,n it)))
       ,n)))
 
(defun -first (pred list)
  "Return the first x in LIST where (PRED x) is non-nil, else nil.
 
To get the first item in the list no questions asked, use `car'.
 
Alias: `-find'"
  (--first (funcall pred it) list))
 
(defalias '-find '-first)
(defalias '--find '--first)
 
(defmacro --some (form list)
  "Anaphoric form of `-some'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each-while ,list (not ,n)
         (setq ,n ,form))
       ,n)))
 
(defun -some (pred list)
  "Return (PRED x) for the first LIST item where (PRED x) is non-nil, else nil.
 
Alias: `-any'"
  (--some (funcall pred it) list))
 
(defalias '-any '-some)
(defalias '--any '--some)
 
(defmacro --last (form list)
  "Anaphoric form of `-last'."
  (declare (debug (form form)))
  (let ((n (make-symbol "needle")))
    `(let (,n)
       (--each ,list
         (when ,form (setq ,n it)))
       ,n)))
 
(defun -last (pred list)
  "Return the last x in LIST where (PRED x) is non-nil, else nil."
  (--last (funcall pred it) list))
 
(defalias '-first-item 'car
  "Return the first item of LIST, or nil on an empty list.
 
See also: `-second-item', `-last-item'.
 
\(fn LIST)")
 
;; Ensure that calls to `-first-item' are compiled to a single opcode,
;; just like `car'.
(put '-first-item 'byte-opcode 'byte-car)
(put '-first-item 'byte-compile 'byte-compile-one-arg)
 
(defalias '-second-item 'cadr
  "Return the second item of LIST, or nil if LIST is too short.
 
See also: `-third-item'.
 
\(fn LIST)")
 
(defalias '-third-item 'caddr
  "Return the third item of LIST, or nil if LIST is too short.
 
See also: `-fourth-item'.
 
\(fn LIST)")
 
(defun -fourth-item (list)
  "Return the fourth item of LIST, or nil if LIST is too short.
 
See also: `-fifth-item'."
  (declare (pure t) (side-effect-free t))
  (car (cdr (cdr (cdr list)))))
 
(defun -fifth-item (list)
  "Return the fifth item of LIST, or nil if LIST is too short.
 
See also: `-last-item'."
  (declare (pure t) (side-effect-free t))
  (car (cdr (cdr (cdr (cdr list))))))
 
;; TODO: gv was introduced in 24.3, so we can remove the if statement
;; when support for earlier versions is dropped
(eval-when-compile
  (require 'cl)
  (if (fboundp 'gv-define-simple-setter)
      (gv-define-simple-setter -first-item setcar)
    (require 'cl)
    (with-no-warnings
      (defsetf -first-item (x) (val) `(setcar ,x ,val)))))
 
(defun -last-item (list)
  "Return the last item of LIST, or nil on an empty list."
  (declare (pure t) (side-effect-free t))
  (car (last list)))
 
;; TODO: gv was introduced in 24.3, so we can remove the if statement
;; when support for earlier versions is dropped
(eval-when-compile
  (if (fboundp 'gv-define-setter)
      (gv-define-setter -last-item (val x) `(setcar (last ,x) ,val))
    (with-no-warnings
      (defsetf -last-item (x) (val) `(setcar (last ,x) ,val)))))
 
(defun -butlast (list)
  "Return a list of all items in list except for the last."
  ;; no alias as we don't want magic optional argument
  (declare (pure t) (side-effect-free t))
  (butlast list))
 
(defmacro --count (pred list)
  "Anaphoric form of `-count'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let ((,r 0))
       (--each ,list (when ,pred (setq ,r (1+ ,r))))
       ,r)))
 
(defun -count (pred list)
  "Counts the number of items in LIST where (PRED item) is non-nil."
  (--count (funcall pred it) list))
 
(defun ---truthy? (val)
  (declare (pure t) (side-effect-free t))
  (not (null val)))
 
(defmacro --any? (form list)
  "Anaphoric form of `-any?'."
  (declare (debug (form form)))
  `(---truthy? (--some ,form ,list)))
 
(defun -any? (pred list)
  "Return t if (PRED x) is non-nil for any x in LIST, else nil.
 
Alias: `-any-p', `-some?', `-some-p'"
  (--any? (funcall pred it) list))
 
(defalias '-some? '-any?)
(defalias '--some? '--any?)
(defalias '-any-p '-any?)
(defalias '--any-p '--any?)
(defalias '-some-p '-any?)
(defalias '--some-p '--any?)
 
(defmacro --all? (form list)
  "Anaphoric form of `-all?'."
  (declare (debug (form form)))
  (let ((a (make-symbol "all")))
    `(let ((,a t))
       (--each-while ,list ,a (setq ,a ,form))
       (---truthy? ,a))))
 
(defun -all? (pred list)
  "Return t if (PRED x) is non-nil for all x in LIST, else nil.
 
Alias: `-all-p', `-every?', `-every-p'"
  (--all? (funcall pred it) list))
 
(defalias '-every? '-all?)
(defalias '--every? '--all?)
(defalias '-all-p '-all?)
(defalias '--all-p '--all?)
(defalias '-every-p '-all?)
(defalias '--every-p '--all?)
 
(defmacro --none? (form list)
  "Anaphoric form of `-none?'."
  (declare (debug (form form)))
  `(--all? (not ,form) ,list))
 
(defun -none? (pred list)
  "Return t if (PRED x) is nil for all x in LIST, else nil.
 
Alias: `-none-p'"
  (--none? (funcall pred it) list))
 
(defalias '-none-p '-none?)
(defalias '--none-p '--none?)
 
(defmacro --only-some? (form list)
  "Anaphoric form of `-only-some?'."
  (declare (debug (form form)))
  (let ((y (make-symbol "yes"))
        (n (make-symbol "no")))
    `(let (,y ,n)
       (--each-while ,list (not (and ,y ,n))
         (if ,form (setq ,y t) (setq ,n t)))
       (---truthy? (and ,y ,n)))))
 
(defun -only-some? (pred list)
  "Return `t` if at least one item of LIST matches PRED and at least one item of LIST does not match PRED.
Return `nil` both if all items match the predicate or if none of the items match the predicate.
 
Alias: `-only-some-p'"
  (--only-some? (funcall pred it) list))
 
(defalias '-only-some-p '-only-some?)
(defalias '--only-some-p '--only-some?)
 
(defun -slice (list from &optional to step)
  "Return copy of LIST, starting from index FROM to index TO.
 
FROM or TO may be negative.  These values are then interpreted
modulo the length of the list.
 
If STEP is a number, only each STEPth item in the resulting
section is returned.  Defaults to 1."
  (declare (pure t) (side-effect-free t))
  (let ((length (length list))
        (new-list nil))
    ;; to defaults to the end of the list
    (setq to (or to length))
    (setq step (or step 1))
    ;; handle negative indices
    (when (< from 0)
      (setq from (mod from length)))
    (when (< to 0)
      (setq to (mod to length)))
 
    ;; iterate through the list, keeping the elements we want
    (--each-while list (< it-index to)
      (when (and (>= it-index from)
                 (= (mod (- from it-index) step) 0))
        (push it new-list)))
    (nreverse new-list)))
 
(defun -take (n list)
  "Return a new list of the first N items in LIST, or all items if there are fewer than N.
 
See also: `-take-last'"
  (declare (pure t) (side-effect-free t))
  (let (result)
    (--dotimes n
      (when list
        (!cons (car list) result)
        (!cdr list)))
    (nreverse result)))
 
(defun -take-last (n list)
  "Return the last N items of LIST in order.
 
See also: `-take'"
  (declare (pure t) (side-effect-free t))
  (copy-sequence (last list n)))
 
(defalias '-drop 'nthcdr
  "Return the tail of LIST without the first N items.
 
See also: `-drop-last'
 
\(fn N LIST)")
 
(defun -drop-last (n list)
  "Remove the last N items of LIST and return a copy.
 
See also: `-drop'"
  ;; No alias because we don't want magic optional argument
  (declare (pure t) (side-effect-free t))
  (butlast list n))
 
(defmacro --take-while (form list)
  "Anaphoric form of `-take-while'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result")))
    `(let (,r)
       (--each-while ,list ,form (!cons it ,r))
       (nreverse ,r))))
 
(defun -take-while (pred list)
  "Return a new list of successive items from LIST while (PRED item) returns a non-nil value."
  (--take-while (funcall pred it) list))
 
(defmacro --drop-while (form list)
  "Anaphoric form of `-drop-while'."
  (declare (debug (form form)))
  (let ((l (make-symbol "list")))
    `(let ((,l ,list))
       (while (and ,l (let ((it (car ,l))) ,form))
         (!cdr ,l))
       ,l)))
 
(defun -drop-while (pred list)
  "Return the tail of LIST starting from the first item for which (PRED item) returns nil."
  (--drop-while (funcall pred it) list))
 
(defun -split-at (n list)
  "Return a list of ((-take N LIST) (-drop N LIST)), in no more than one pass through the list."
  (declare (pure t) (side-effect-free t))
  (let (result)
    (--dotimes n
      (when list
        (!cons (car list) result)
        (!cdr list)))
    (list (nreverse result) list)))
 
(defun -rotate (n list)
  "Rotate LIST N places to the right.  With N negative, rotate to the left.
The time complexity is O(n)."
  (declare (pure t) (side-effect-free t))
  (if (> n 0)
      (append (last list n) (butlast list n))
    (append (-drop (- n) list) (-take (- n) list))))
 
(defun -insert-at (n x list)
  "Return a list with X inserted into LIST at position N.
 
See also: `-splice', `-splice-list'"
  (declare (pure t) (side-effect-free t))
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons x (cadr split-list)))))
 
(defun -replace-at (n x list)
  "Return a list with element at Nth position in LIST replaced with X.
 
See also: `-replace'"
  (declare (pure t) (side-effect-free t))
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons x (cdr (cadr split-list))))))
 
(defun -update-at (n func list)
  "Return a list with element at Nth position in LIST replaced with `(func (nth n list))`.
 
See also: `-map-when'"
  (let ((split-list (-split-at n list)))
    (nconc (car split-list) (cons (funcall func (car (cadr split-list))) (cdr (cadr split-list))))))
 
(defmacro --update-at (n form list)
  "Anaphoric version of `-update-at'."
  (declare (debug (form form form)))
  `(-update-at ,n (lambda (it) ,form) ,list))
 
(defun -remove-at (n list)
  "Return a list with element at Nth position in LIST removed.
 
See also: `-remove-at-indices', `-remove'"
  (declare (pure t) (side-effect-free t))
  (-remove-at-indices (list n) list))
 
(defun -remove-at-indices (indices list)
  "Return a list whose elements are elements from LIST without
elements selected as `(nth i list)` for all i
from INDICES.
 
See also: `-remove-at', `-remove'"
  (declare (pure t) (side-effect-free t))
  (let* ((indices (-sort '< indices))
         (diffs (cons (car indices) (-map '1- (-zip-with '- (cdr indices) indices))))
         r)
    (--each diffs
      (let ((split (-split-at it list)))
        (!cons (car split) r)
        (setq list (cdr (cadr split)))))
    (!cons list r)
    (apply '-concat (nreverse r))))
 
(defmacro --split-with (pred list)
  "Anaphoric form of `-split-with'."
  (declare (debug (form form)))
  (let ((l (make-symbol "list"))
        (r (make-symbol "result"))
        (c (make-symbol "continue")))
    `(let ((,l ,list)
           (,r nil)
           (,c t))
       (while (and ,l ,c)
         (let ((it (car ,l)))
           (if (not ,pred)
               (setq ,c nil)
             (!cons it ,r)
             (!cdr ,l))))
       (list (nreverse ,r) ,l))))
 
(defun -split-with (pred list)
  "Return a list of ((-take-while PRED LIST) (-drop-while PRED LIST)), in no more than one pass through the list."
  (--split-with (funcall pred it) list))
 
(defmacro -split-on (item list)
  "Split the LIST each time ITEM is found.
 
Unlike `-partition-by', the ITEM is discarded from the results.
Empty lists are also removed from the result.
 
Comparison is done by `equal'.
 
See also `-split-when'"
  (declare (debug (form form)))
  `(-split-when (lambda (it) (equal it ,item)) ,list))
 
(defmacro --split-when (form list)
  "Anaphoric version of `-split-when'."
  (declare (debug (form form)))
  `(-split-when (lambda (it) ,form) ,list))
 
(defun -split-when (fn list)
  "Split the LIST on each element where FN returns non-nil.
 
Unlike `-partition-by', the \"matched\" element is discarded from
the results.  Empty lists are also removed from the result.
 
This function can be thought of as a generalization of
`split-string'."
  (let (r s)
    (while list
      (if (not (funcall fn (car list)))
          (push (car list) s)
        (when s (push (nreverse s) r))
        (setq s nil))
      (!cdr list))
    (when s (push (nreverse s) r))
    (nreverse r)))
 
(defmacro --separate (form list)
  "Anaphoric form of `-separate'."
  (declare (debug (form form)))
  (let ((y (make-symbol "yes"))
        (n (make-symbol "no")))
    `(let (,y ,n)
       (--each ,list (if ,form (!cons it ,y) (!cons it ,n)))
       (list (nreverse ,y) (nreverse ,n)))))
 
(defun -separate (pred list)
  "Return a list of ((-filter PRED LIST) (-remove PRED LIST)), in one pass through the list."
  (--separate (funcall pred it) list))
 
(defun ---partition-all-in-steps-reversed (n step list)
  "Private: Used by -partition-all-in-steps and -partition-in-steps."
  (when (< step 1)
    (error "Step must be a positive number, or you're looking at some juicy infinite loops."))
  (let ((result nil))
    (while list
      (!cons (-take n list) result)
      (setq list (-drop step list)))
    result))
 
(defun -partition-all-in-steps (n step list)
  "Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart.
The last groups may contain less than N items."
  (declare (pure t) (side-effect-free t))
  (nreverse (---partition-all-in-steps-reversed n step list)))
 
(defun -partition-in-steps (n step list)
  "Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart.
If there are not enough items to make the last group N-sized,
those items are discarded."
  (declare (pure t) (side-effect-free t))
  (let ((result (---partition-all-in-steps-reversed n step list)))
    (while (and result (< (length (car result)) n))
      (!cdr result))
    (nreverse result)))
 
(defun -partition-all (n list)
  "Return a new list with the items in LIST grouped into N-sized sublists.
The last group may contain less than N items."
  (declare (pure t) (side-effect-free t))
  (-partition-all-in-steps n n list))
 
(defun -partition (n list)
  "Return a new list with the items in LIST grouped into N-sized sublists.
If there are not enough items to make the last group N-sized,
those items are discarded."
  (declare (pure t) (side-effect-free t))
  (-partition-in-steps n n list))
 
(defmacro --partition-by (form list)
  "Anaphoric form of `-partition-by'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (s (make-symbol "sublist"))
        (v (make-symbol "value"))
        (n (make-symbol "new-value"))
        (l (make-symbol "list")))
    `(let ((,l ,list))
       (when ,l
         (let* ((,r nil)
                (it (car ,l))
                (,s (list it))
                (,v ,form)
                (,l (cdr ,l)))
           (while ,l
             (let* ((it (car ,l))
                    (,n ,form))
               (unless (equal ,v ,n)
                 (!cons (nreverse ,s) ,r)
                 (setq ,s nil)
                 (setq ,v ,n))
               (!cons it ,s)
               (!cdr ,l)))
           (!cons (nreverse ,s) ,r)
           (nreverse ,r))))))
 
(defun -partition-by (fn list)
  "Apply FN to each item in LIST, splitting it each time FN returns a new value."
  (--partition-by (funcall fn it) list))
 
(defmacro --partition-by-header (form list)
  "Anaphoric form of `-partition-by-header'."
  (declare (debug (form form)))
  (let ((r (make-symbol "result"))
        (s (make-symbol "sublist"))
        (h (make-symbol "header-value"))
        (b (make-symbol "seen-body?"))
        (n (make-symbol "new-value"))
        (l (make-symbol "list")))
    `(let ((,l ,list))
       (when ,l
         (let* ((,r nil)
                (it (car ,l))
                (,s (list it))
                (,h ,form)
                (,b nil)
                (,l (cdr ,l)))
           (while ,l
             (let* ((it (car ,l))
                    (,n ,form))
               (if (equal ,h ,n)
                   (when ,b
                     (!cons (nreverse ,s) ,r)
                     (setq ,s nil)
                     (setq ,b nil))
                 (setq ,b t))
               (!cons it ,s)
               (!cdr ,l)))
           (!cons (nreverse ,s) ,r)
           (nreverse ,r))))))
 
(defun -partition-by-header (fn list)
  "Apply FN to the first item in LIST. That is the header
value. Apply FN to each item in LIST, splitting it each time FN
returns the header value, but only after seeing at least one
other value (the body)."
  (--partition-by-header (funcall fn it) list))
 
(defun -partition-after-pred (pred list)
  "Partition directly after each time PRED is true on an element of LIST."
  (when list
    (let ((rest (-partition-after-pred pred
                                       (cdr list))))
      (if (funcall pred (car list))
          ;;split after (car list)
          (cons (list (car list))
                rest)
 
        ;;don't split after (car list)
        (cons (cons (car list)
                    (car rest))
              (cdr rest))))))
 
(defun -partition-before-pred (pred list)
  "Partition directly before each time PRED is true on an element of LIST."
  (nreverse (-map #'reverse
                  (-partition-after-pred pred (reverse list)))))
 
(defun -partition-after-item (item list)
  "Partition directly after each time ITEM appears in LIST."
  (-partition-after-pred (lambda (ele) (equal ele item))
                         list))
 
(defun -partition-before-item (item list)
  "Partition directly before each time ITEM appears in LIST."
  (-partition-before-pred (lambda (ele) (equal ele item))
                          list))
 
(defmacro --group-by (form list)
  "Anaphoric form of `-group-by'."
  (declare (debug t))
  (let ((n (make-symbol "n"))
        (k (make-symbol "k"))
        (grp (make-symbol "grp")))
    `(nreverse
      (-map
       (lambda (,n)
         (cons (car ,n)
               (nreverse (cdr ,n))))
       (--reduce-from
        (let* ((,k (,@form))
               (,grp (assoc ,k acc)))
          (if ,grp
              (setcdr ,grp (cons it (cdr ,grp)))
            (push
             (list ,k it)
             acc))
          acc)
        nil ,list)))))
 
(defun -group-by (fn list)
  "Separate LIST into an alist whose keys are FN applied to the
elements of LIST.  Keys are compared by `equal'."
  (--group-by (funcall fn it) list))
 
(defun -interpose (sep list)
  "Return a new list of all elements in LIST separated by SEP."
  (declare (pure t) (side-effect-free t))
  (let (result)
    (when list
      (!cons (car list) result)
      (!cdr list))
    (while list
      (setq result (cons (car list) (cons sep result)))
      (!cdr list))
    (nreverse result)))
 
(defun -interleave (&rest lists)
  "Return a new list of the first item in each list, then the second etc."
  (declare (pure t) (side-effect-free t))
  (when lists
    (let (result)
      (while (-none? 'null lists)
        (--each lists (!cons (car it) result))
        (setq lists (-map 'cdr lists)))
      (nreverse result))))
 
(defmacro --zip-with (form list1 list2)
  "Anaphoric form of `-zip-with'.
 
The elements in list1 are bound as symbol `it', the elements in list2 as symbol `other'."
  (declare (debug (form form form)))
  (let ((r (make-symbol "result"))
        (l1 (make-symbol "list1"))
        (l2 (make-symbol "list2")))
    `(let ((,r nil)
           (,l1 ,list1)
           (,l2 ,list2))
       (while (and ,l1 ,l2)
         (let ((it (car ,l1))
               (other (car ,l2)))
           (!cons ,form ,r)
           (!cdr ,l1)
           (!cdr ,l2)))
       (nreverse ,r))))
 
(defun -zip-with (fn list1 list2)
  "Zip the two lists LIST1 and LIST2 using a function FN.  This
function is applied pairwise taking as first argument element of
LIST1 and as second argument element of LIST2 at corresponding
position.
 
The anaphoric form `--zip-with' binds the elements from LIST1 as symbol `it',
and the elements from LIST2 as symbol `other'."
  (--zip-with (funcall fn it other) list1 list2))
 
(defun -zip (&rest lists)
  "Zip LISTS together.  Group the head of each list, followed by the
second elements of each list, and so on. The lengths of the returned
groupings are equal to the length of the shortest input list.
 
If two lists are provided as arguments, return the groupings as a list
of cons cells. Otherwise, return the groupings as a list of lists.
 
Please note! This distinction is being removed in an upcoming 3.0
release of Dash. If you rely on this behavior, use -zip-pair instead."
  (declare (pure t) (side-effect-free t))
  (when lists
    (let (results)
      (while (-none? 'null lists)
        (setq results (cons (mapcar 'car lists) results))
        (setq lists (mapcar 'cdr lists)))
      (setq results (nreverse results))
      (if (= (length lists) 2)
          ;; to support backward compatability, return
          ;; a cons cell if two lists were provided
          (--map (cons (car it) (cadr it)) results)
        results))))
 
(defalias '-zip-pair '-zip)
 
(defun -zip-fill (fill-value &rest lists)
  "Zip LISTS, with FILL-VALUE padded onto the shorter lists. The
lengths of the returned groupings are equal to the length of the
longest input list."
  (declare (pure t) (side-effect-free t))
  (apply '-zip (apply '-pad (cons fill-value lists))))
 
(defun -unzip (lists)
  "Unzip LISTS.
 
This works just like `-zip' but takes a list of lists instead of
a variable number of arguments, such that
 
  (-unzip (-zip L1 L2 L3 ...))
 
is identity (given that the lists are the same length).
 
See also: `-zip'"
  (apply '-zip lists))
 
(defun -cycle (list)
  "Return an infinite copy of LIST that will cycle through the
elements and repeat from the beginning."
  (declare (pure t) (side-effect-free t))
  (let ((newlist (-map 'identity list)))
    (nconc newlist newlist)))
 
(defun -pad (fill-value &rest lists)
  "Appends FILL-VALUE to the end of each list in LISTS such that they
will all have the same length."
  (let* ((annotations (-annotate 'length lists))
         (n (-max (-map 'car annotations))))
    (--map (append (cdr it) (-repeat (- n (car it)) fill-value)) annotations)))
 
(defun -annotate (fn list)
  "Return a list of cons cells where each cell is FN applied to each
element of LIST paired with the unmodified element of LIST."
  (-zip (-map fn list) list))
 
(defmacro --annotate (form list)
  "Anaphoric version of `-annotate'."
  (declare (debug (form form)))
  `(-annotate (lambda (it) ,form) ,list))
 
(defun dash--table-carry (lists restore-lists &optional re)
  "Helper for `-table' and `-table-flat'.
 
If a list overflows, carry to the right and reset the list."
  (while (not (or (car lists)
                  (equal lists '(nil))))
    (setcar lists (car restore-lists))
    (pop (cadr lists))
    (!cdr lists)
    (!cdr restore-lists)
    (when re
      (push (nreverse (car re)) (cadr re))
      (setcar re nil)
      (!cdr re))))
 
(defun -table (fn &rest lists)
  "Compute outer product of LISTS using function FN.
 
The function FN should have the same arity as the number of
supplied lists.
 
The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The dimension of the result is (length lists).
 
See also: `-table-flat'"
  (let ((restore-lists (copy-sequence lists))
        (last-list (last lists))
        (re (make-list (length lists) nil)))
    (while (car last-list)
      (let ((item (apply fn (-map 'car lists))))
        (push item (car re))
        (setcar lists (cdar lists)) ;; silence byte compiler
        (dash--table-carry lists restore-lists re)))
    (nreverse (car (last re)))))
 
(defun -table-flat (fn &rest lists)
  "Compute flat outer product of LISTS using function FN.
 
The function FN should have the same arity as the number of
supplied lists.
 
The outer product is computed by applying fn to all possible
combinations created by taking one element from each list in
order.  The results are flattened, ignoring the tensor structure
of the result.  This is equivalent to calling:
 
  (-flatten-n (1- (length lists)) (apply \\='-table fn lists))
 
but the implementation here is much more efficient.
 
See also: `-flatten-n', `-table'"
  (let ((restore-lists (copy-sequence lists))
        (last-list (last lists))
        re)
    (while (car last-list)
      (let ((item (apply fn (-map 'car lists))))
        (push item re)
        (setcar lists (cdar lists)) ;; silence byte compiler
        (dash--table-carry lists restore-lists)))
    (nreverse re)))
 
(defun -partial (fn &rest args)
  "Take a function FN and fewer than the normal arguments to FN,
and return a fn that takes a variable number of additional ARGS.
When called, the returned function calls FN with ARGS first and
then additional args."
  (apply 'apply-partially fn args))
 
(defun -elem-index (elem list)
  "Return the index of the first element in the given LIST which
is equal to the query element ELEM, or nil if there is no
such element."
  (declare (pure t) (side-effect-free t))
  (car (-elem-indices elem list)))
 
(defun -elem-indices (elem list)
  "Return the indices of all elements in LIST equal to the query
element ELEM, in ascending order."
  (declare (pure t) (side-effect-free t))
  (-find-indices (-partial 'equal elem) list))
 
(defun -find-indices (pred list)
  "Return the indices of all elements in LIST satisfying the
predicate PRED, in ascending order."
  (apply 'append (--map-indexed (when (funcall pred it) (list it-index)) list)))
 
(defmacro --find-indices (form list)
  "Anaphoric version of `-find-indices'."
  (declare (debug (form form)))
  `(-find-indices (lambda (it) ,form) ,list))
 
(defun -find-index (pred list)
  "Take a predicate PRED and a LIST and return the index of the
first element in the list satisfying the predicate, or nil if
there is no such element.
 
See also `-first'."
  (car (-find-indices pred list)))
 
(defmacro --find-index (form list)
  "Anaphoric version of `-find-index'."
  (declare (debug (form form)))
  `(-find-index (lambda (it) ,form) ,list))
 
(defun -find-last-index (pred list)
  "Take a predicate PRED and a LIST and return the index of the
last element in the list satisfying the predicate, or nil if
there is no such element.
 
See also `-last'."
  (-last-item (-find-indices pred list)))
 
(defmacro --find-last-index (form list)
  "Anaphoric version of `-find-last-index'."
  `(-find-last-index (lambda (it) ,form) ,list))
 
(defun -select-by-indices (indices list)
  "Return a list whose elements are elements from LIST selected
as `(nth i list)` for all i from INDICES."
  (declare (pure t) (side-effect-free t))
  (let (r)
    (--each indices
      (!cons (nth it list) r))
    (nreverse r)))
 
(defun -select-columns (columns table)
  "Select COLUMNS from TABLE.
 
TABLE is a list of lists where each element represents one row.
It is assumed each row has the same length.
 
Each row is transformed such that only the specified COLUMNS are
selected.
 
See also: `-select-column', `-select-by-indices'"
  (declare (pure t) (side-effect-free t))
  (--map (-select-by-indices columns it) table))
 
(defun -select-column (column table)
  "Select COLUMN from TABLE.
 
TABLE is a list of lists where each element represents one row.
It is assumed each row has the same length.
 
The single selected column is returned as a list.
 
See also: `-select-columns', `-select-by-indices'"
  (declare (pure t) (side-effect-free t))
  (--mapcat (-select-by-indices (list column) it) table))
 
(defmacro -> (x &optional form &rest more)
  "Thread the expr through the forms. Insert X as the second item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
second item in second form, etc."
  (declare (debug (form &rest [&or symbolp (sexp &rest form)])))
  (cond
   ((null form) x)
   ((null more) (if (listp form)
                    `(,(car form) ,x ,@(cdr form))
                  (list form x)))
   (:else `(-> (-> ,x ,form) ,@more))))
 
(defmacro ->> (x &optional form &rest more)
  "Thread the expr through the forms. Insert X as the last item
in the first form, making a list of it if it is not a list
already. If there are more forms, insert the first form as the
last item in second form, etc."
  (declare (debug ->))
  (cond
   ((null form) x)
   ((null more) (if (listp form)
                    `(,@form ,x)
                  (list form x)))
   (:else `(->> (->> ,x ,form) ,@more))))
 
(defmacro --> (x &rest forms)
  "Starting with the value of X, thread each expression through FORMS.
 
Insert X at the position signified by the symbol `it' in the first
form.  If there are more forms, insert the first form at the position
signified by `it' in in second form, etc."
  (declare (debug (form body)))
  `(-as-> ,x it ,@forms))
 
(defmacro -as-> (value variable &rest forms)
  "Starting with VALUE, thread VARIABLE through FORMS.
 
In the first form, bind VARIABLE to VALUE.  In the second form, bind
VARIABLE to the result of the first form, and so forth."
  (declare (debug (form symbolp body)))
  (if (null forms)
      `,value
    `(let ((,variable ,value))
       (-as-> ,(if (symbolp (car forms))
                 (list (car forms) variable)
               (car forms))
            ,variable
              ,@(cdr forms)))))
 
(defmacro -some-> (x &optional form &rest more)
  "When expr is non-nil, thread it through the first form (via `->'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some-> (-when-let (,result ,x)
                  (-> ,result ,form))
                ,@more))))
 
(defmacro -some->> (x &optional form &rest more)
  "When expr is non-nil, thread it through the first form (via `->>'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some->> (-when-let (,result ,x)
                   (->> ,result ,form))
                 ,@more))))
 
(defmacro -some--> (x &optional form &rest more)
  "When expr in non-nil, thread it through the first form (via `-->'),
and when that result is non-nil, through the next form, etc."
  (declare (debug ->))
  (if (null form) x
    (let ((result (make-symbol "result")))
      `(-some--> (-when-let (,result ,x)
                   (--> ,result ,form))
                 ,@more))))
 
(defun -grade-up (comparator list)
  "Grade elements of LIST using COMPARATOR relation, yielding a
permutation vector such that applying this permutation to LIST
sorts it in ascending order."
  ;; ugly hack to "fix" lack of lexical scope
  (let ((comp `(lambda (it other) (funcall ',comparator (car it) (car other)))))
    (->> (--map-indexed (cons it it-index) list)
         (-sort comp)
         (-map 'cdr))))
 
(defun -grade-down (comparator list)
  "Grade elements of LIST using COMPARATOR relation, yielding a
permutation vector such that applying this permutation to LIST
sorts it in descending order."
  ;; ugly hack to "fix" lack of lexical scope
  (let ((comp `(lambda (it other) (funcall ',comparator (car other) (car it)))))
    (->> (--map-indexed (cons it it-index) list)
         (-sort comp)
         (-map 'cdr))))
 
(defvar dash--source-counter 0
  "Monotonic counter for generated symbols.")
 
(defun dash--match-make-source-symbol ()
  "Generate a new dash-source symbol.
 
All returned symbols are guaranteed to be unique."
  (prog1 (make-symbol (format "--dash-source-%d--" dash--source-counter))
    (setq dash--source-counter (1+ dash--source-counter))))
 
(defun dash--match-ignore-place-p (symbol)
  "Return non-nil if SYMBOL is a symbol and starts with _."
  (and (symbolp symbol)
       (eq (aref (symbol-name symbol) 0) ?_)))
 
(defun dash--match-cons-skip-cdr (skip-cdr source)
  "Helper function generating idiomatic shifting code."
  (cond
   ((= skip-cdr 0)
    `(pop ,source))
   (t
    `(prog1 ,(dash--match-cons-get-car skip-cdr source)
       (setq ,source ,(dash--match-cons-get-cdr (1+ skip-cdr) source))))))
 
(defun dash--match-cons-get-car (skip-cdr source)
  "Helper function generating idiomatic code to get nth car."
  (cond
   ((= skip-cdr 0)
    `(car ,source))
   ((= skip-cdr 1)
    `(cadr ,source))
   (t
    `(nth ,skip-cdr ,source))))
 
(defun dash--match-cons-get-cdr (skip-cdr source)
  "Helper function generating idiomatic code to get nth cdr."
  (cond
   ((= skip-cdr 0)
    source)
   ((= skip-cdr 1)
    `(cdr ,source))
   (t
    `(nthcdr ,skip-cdr ,source))))
 
(defun dash--match-cons (match-form source)
  "Setup a cons matching environment and call the real matcher."
  (let ((s (dash--match-make-source-symbol))
        (n 0)
        (m match-form))
    (while (and (consp m)
                (dash--match-ignore-place-p (car m)))
      (setq n (1+ n)) (!cdr m))
    (cond
     ;; when we only have one pattern in the list, we don't have to
     ;; create a temporary binding (--dash-source--) for the source
     ;; and just use the input directly
     ((and (consp m)
           (not (cdr m)))
      (dash--match (car m) (dash--match-cons-get-car n source)))
     ;; handle other special types
     ((> n 0)
      (dash--match m (dash--match-cons-get-cdr n source)))
     ;; this is the only entry-point for dash--match-cons-1, that's
     ;; why we can't simply use the above branch, it would produce
     ;; infinite recursion
     (t
      (cons (list s source) (dash--match-cons-1 match-form s))))))
 
(defun dash--match-cons-1 (match-form source &optional props)
  "Match MATCH-FORM against SOURCE.
 
MATCH-FORM is a proper or improper list.  Each element of
MATCH-FORM is either a symbol, which gets bound to the respective
value in source or another match form which gets destructured
recursively.
 
If the cdr of last cons cell in the list is `nil', matching stops
there.
 
SOURCE is a proper or improper list."
  (let ((skip-cdr (or (plist-get props :skip-cdr) 0)))
    (cond
     ((consp match-form)
      (cond
       ((cdr match-form)
        (cond
         ((and (symbolp (car match-form))
               (memq (car match-form) '(&keys &plist &alist &hash)))
          (dash--match-kv (dash--match-kv-normalize-match-form match-form) (dash--match-cons-get-cdr skip-cdr source)))
         ((dash--match-ignore-place-p (car match-form))
          (dash--match-cons-1 (cdr match-form) source
                              (plist-put props :skip-cdr (1+ skip-cdr))))
         (t
          (-concat (dash--match (car match-form) (dash--match-cons-skip-cdr skip-cdr source))
                   (dash--match-cons-1 (cdr match-form) source)))))
       (t ;; Last matching place, no need for shift
        (dash--match (car match-form) (dash--match-cons-get-car skip-cdr source)))))
     ((eq match-form nil)
      nil)
     (t ;; Handle improper lists.  Last matching place, no need for shift
      (dash--match match-form (dash--match-cons-get-cdr skip-cdr source))))))
 
(defun dash--vector-tail (seq start)
  "Return the tail of SEQ starting at START."
  (cond
   ((vectorp seq)
    (let* ((re-length (- (length seq) start))
           (re (make-vector re-length 0)))
      (--dotimes re-length (aset re it (aref seq (+ it start))))
      re))
   ((stringp seq)
    (substring seq start))))
 
(defun dash--match-vector (match-form source)
  "Setup a vector matching environment and call the real matcher."
  (let ((s (dash--match-make-source-symbol)))
    (cond
     ;; don't bind `s' if we only have one sub-pattern
     ((= (length match-form) 1)
      (dash--match (aref match-form 0) `(aref ,source 0)))
     ;; if the source is a symbol, we don't need to re-bind it
     ((symbolp source)
      (dash--match-vector-1 match-form source))
     ;; don't bind `s' if we only have one sub-pattern which is not ignored
     ((let* ((ignored-places (mapcar 'dash--match-ignore-place-p match-form))
             (ignored-places-n (length (-remove 'null ignored-places))))
        (when (= ignored-places-n (1- (length match-form)))
          (let ((n (-find-index 'null ignored-places)))
            (dash--match (aref match-form n) `(aref ,source ,n))))))
     (t
      (cons (list s source) (dash--match-vector-1 match-form s))))))
 
(defun dash--match-vector-1 (match-form source)
  "Match MATCH-FORM against SOURCE.
 
MATCH-FORM is a vector.  Each element of MATCH-FORM is either a
symbol, which gets bound to the respective value in source or
another match form which gets destructured recursively.
 
If second-from-last place in MATCH-FORM is the symbol &rest, the
next element of the MATCH-FORM is matched against the tail of
SOURCE, starting at index of the &rest symbol.  This is
conceptually the same as the (head . tail) match for improper
lists, where dot plays the role of &rest.
 
SOURCE is a vector.
 
If the MATCH-FORM vector is shorter than SOURCE vector, only
the (length MATCH-FORM) places are bound, the rest of the SOURCE
is discarded."
  (let ((i 0)
        (l (length match-form))
        (re))
    (while (< i l)
      (let ((m (aref match-form i)))
        (push (cond
               ((and (symbolp m)
                     (eq m '&rest))
                (prog1 (dash--match
                        (aref match-form (1+ i))
                        `(dash--vector-tail ,source ,i))
                  (setq i l)))
               ((and (symbolp m)
                     ;; do not match symbols starting with _
                     (not (eq (aref (symbol-name m) 0) ?_)))
                (list (list m `(aref ,source ,i))))
               ((not (symbolp m))
                (dash--match m `(aref ,source ,i))))
              re)
        (setq i (1+ i))))
    (-flatten-n 1 (nreverse re))))
 
(defun dash--match-kv-normalize-match-form (pattern)
  "Normalize kv PATTERN.
 
This method normalizes PATTERN to the format expected by
`dash--match-kv'.  See `-let' for the specification."
  (let ((normalized (list (car pattern)))
        (skip nil)
        (fill-placeholder (make-symbol "--dash-fill-placeholder--")))
    (-each (apply '-zip (-pad fill-placeholder (cdr pattern) (cddr pattern)))
      (lambda (pair)
        (let ((current (car pair))
              (next (cdr pair)))
          (if skip
              (setq skip nil)
            (if (or (eq fill-placeholder next)
                    (not (or (and (symbolp next)
                                  (not (keywordp next))
                                  (not (eq next t))
                                  (not (eq next nil)))
                             (and (consp next)
                                  (not (eq (car next) 'quote)))
                             (vectorp next))))
                (progn
                  (cond
                   ((keywordp current)
                    (push current normalized)
                    (push (intern (substring (symbol-name current) 1)) normalized))
                   ((stringp current)
                    (push current normalized)
                    (push (intern current) normalized))
                   ((and (consp current)
                         (eq (car current) 'quote))
                    (push current normalized)
                    (push (cadr current) normalized))
                   (t (error "-let: found key `%s' in kv destructuring but its pattern `%s' is invalid and can not be derived from the key" current next)))
                  (setq skip nil))
              (push current normalized)
              (push next normalized)
              (setq skip t))))))
    (nreverse normalized)))
 
(defun dash--match-kv (match-form source)
  "Setup a kv matching environment and call the real matcher.
 
kv can be any key-value store, such as plist, alist or hash-table."
  (let ((s (dash--match-make-source-symbol)))
    (cond
     ;; don't bind `s' if we only have one sub-pattern (&type key val)
     ((= (length match-form) 3)
      (dash--match-kv-1 (cdr match-form) source (car match-form)))
     ;; if the source is a symbol, we don't need to re-bind it
     ((symbolp source)
      (dash--match-kv-1 (cdr match-form) source (car match-form)))
     (t
      (cons (list s source) (dash--match-kv-1 (cdr match-form) s (car match-form)))))))
 
(defun dash--match-kv-1 (match-form source type)
  "Match MATCH-FORM against SOURCE of type TYPE.
 
MATCH-FORM is a proper list of the form (key1 place1 ... keyN
placeN).  Each placeK is either a symbol, which gets bound to the
value of keyK retrieved from the key-value store, or another
match form which gets destructured recursively.
 
SOURCE is a key-value store of type TYPE, which can be a plist,
an alist or a hash table.
 
TYPE is a token specifying the type of the key-value store.
Valid values are &plist, &alist and &hash."
  (-flatten-n 1 (-map
                 (lambda (kv)
                   (let* ((k (car kv))
                          (v (cadr kv))
                          (getter (cond
                                   ((or (eq type '&plist) (eq type '&keys))
                                    `(plist-get ,source ,k))
                                   ((eq type '&alist)
                                    `(cdr (assoc ,k ,source)))
                                   ((eq type '&hash)
                                    `(gethash ,k ,source)))))
                     (cond
                      ((symbolp v)
                       (list (list v getter)))
                      (t (dash--match v getter)))))
                 (-partition 2 match-form))))
 
(defun dash--match-symbol (match-form source)
  "Bind a symbol.
 
This works just like `let', there is no destructuring."
  (list (list match-form source)))
 
(defun dash--match (match-form source)
  "Match MATCH-FORM against SOURCE.
 
This function tests the MATCH-FORM and dispatches to specific
matchers based on the type of the expression.
 
Key-value stores are disambiguated by placing a token &plist,
&alist or &hash as a first item in the MATCH-FORM."
  (cond
   ((symbolp match-form)
    (dash--match-symbol match-form source))
   ((consp match-form)
    (cond
     ;; Handle the "x &as" bindings first.
     ((and (consp (cdr match-form))
           (symbolp (car match-form))
           (eq '&as (cadr match-form)))
      (let ((s (car match-form)))
        (cons (list s source)
              (dash--match (cddr match-form) s))))
     ((memq (car match-form) '(&keys &plist &alist &hash))
      (dash--match-kv (dash--match-kv-normalize-match-form match-form) source))
     (t (dash--match-cons match-form source))))
   ((vectorp match-form)
    ;; We support the &as binding in vectors too
    (cond
     ((and (> (length match-form) 2)
           (symbolp (aref match-form 0))
           (eq '&as (aref match-form 1)))
      (let ((s (aref match-form 0)))
        (cons (list s source)
              (dash--match (dash--vector-tail match-form 2) s))))
     (t (dash--match-vector match-form source))))))
 
(defun dash--normalize-let-varlist (varlist)
  "Normalize VARLIST so that every binding is a list.
 
`let' allows specifying a binding which is not a list but simply
the place which is then automatically bound to nil, such that all
three of the following are identical and evaluate to nil.
 
  (let (a) a)
  (let ((a)) a)
  (let ((a nil)) a)
 
This function normalizes all of these to the last form."
  (--map (if (consp it) it (list it nil)) varlist))
 
(defmacro -let* (varlist &rest body)
  "Bind variables according to VARLIST then eval BODY.
 
VARLIST is a list of lists of the form (PATTERN SOURCE).  Each
PATTERN is matched against the SOURCE structurally.  SOURCE is
only evaluated once for each PATTERN.
 
Each SOURCE can refer to the symbols already bound by this
VARLIST.  This is useful if you want to destructure SOURCE
recursively but also want to name the intermediate structures.
 
See `-let' for the list of all possible patterns."
  (declare (debug ((&rest [&or (sexp form) sexp]) body))
           (indent 1))
  (let* ((varlist (dash--normalize-let-varlist varlist))
         (bindings (--mapcat (dash--match (car it) (cadr it)) varlist)))
    `(let* ,bindings
       ,@body)))
 
(defmacro -let (varlist &rest body)
  "Bind variables according to VARLIST then eval BODY.
 
VARLIST is a list of lists of the form (PATTERN SOURCE).  Each
PATTERN is matched against the SOURCE \"structurally\".  SOURCE
is only evaluated once for each PATTERN.  Each PATTERN is matched
recursively, and can therefore contain sub-patterns which are
matched against corresponding sub-expressions of SOURCE.
 
All the SOURCEs are evalled before any symbols are
bound (i.e. \"in parallel\").
 
If VARLIST only contains one (PATTERN SOURCE) element, you can
optionally specify it using a vector and discarding the
outer-most parens.  Thus
 
  (-let ((PATTERN SOURCE)) ..)
 
becomes
 
  (-let [PATTERN SOURCE] ..).
 
`-let' uses a convention of not binding places (symbols) starting
with _ whenever it's possible.  You can use this to skip over
entries you don't care about.  However, this is not *always*
possible (as a result of implementation) and these symbols might
get bound to undefined values.
 
Following is the overview of supported patterns.  Remember that
patterns can be matched recursively, so every a, b, aK in the
following can be a matching construct and not necessarily a
symbol/variable.
 
Symbol:
 
  a - bind the SOURCE to A.  This is just like regular `let'.
 
Conses and lists:
 
  (a) - bind `car' of cons/list to A
 
  (a . b) - bind car of cons to A and `cdr' to B
 
  (a b) - bind car of list to A and `cadr' to B
 
  (a1 a2 a3  ...) - bind 0th car of list to A1, 1st to A2, 2nd to A3 ...
 
  (a1 a2 a3 ... aN . rest) - as above, but bind the Nth cdr to REST.
 
Vectors:
 
  [a] - bind 0th element of a non-list sequence to A (works with
        vectors, strings, bit arrays...)
 
  [a1 a2 a3 ...] - bind 0th element of non-list sequence to A0, 1st to
                   A1, 2nd to A2, ...
                   If the PATTERN is shorter than SOURCE, the values at
                   places not in PATTERN are ignored.
                   If the PATTERN is longer than SOURCE, an `error' is
                   thrown.
 
  [a1 a2 a3 ... &rest rest] - as above, but bind the rest of
                              the sequence to REST.  This is
                              conceptually the same as improper list
                              matching (a1 a2 ... aN . rest)
 
Key/value stores:
 
  (&plist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                 SOURCE plist to aK.  If the
                                 value is not found, aK is nil.
                                 Uses `plist-get' to fetch values.
 
  (&alist key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                 SOURCE alist to aK.  If the
                                 value is not found, aK is nil.
                                 Uses `assoc' to fetch values.
 
  (&hash key0 a0 ... keyN aN) - bind value mapped by keyK in the
                                SOURCE hash table to aK.  If the
                                value is not found, aK is nil.
                                Uses `gethash' to fetch values.
 
Further, special keyword &keys supports \"inline\" matching of
plist-like key-value pairs, similarly to &keys keyword of
`cl-defun'.
 
  (a1 a2 ... aN &keys key1 b1 ... keyN bK)
 
This binds N values from the list to a1 ... aN, then interprets
the cdr as a plist (see key/value matching above).
 
A shorthand notation for kv-destructuring exists which allows the
patterns be optionally left out and derived from the key name in
the following fashion:
 
- a key :foo is converted into `foo' pattern,
- a key 'bar is converted into `bar' pattern,
- a key \"baz\" is converted into `baz' pattern.
 
That is, the entire value under the key is bound to the derived
variable without any further destructuring.
 
This is possible only when the form following the key is not a
valid pattern (i.e. not a symbol, a cons cell or a vector).
Otherwise the matching proceeds as usual and in case of an
invalid spec fails with an error.
 
Thus the patterns are normalized as follows:
 
   ;; derive all the missing patterns
   (&plist :foo 'bar \"baz\") => (&plist :foo foo 'bar bar \"baz\" baz)
 
   ;; we can specify some but not others
   (&plist :foo 'bar explicit-bar) => (&plist :foo foo 'bar explicit-bar)
 
   ;; nothing happens, we store :foo in x
   (&plist :foo x) => (&plist :foo x)
 
   ;; nothing happens, we match recursively
   (&plist :foo (a b c)) => (&plist :foo (a b c))
 
You can name the source using the syntax SYMBOL &as PATTERN.
This syntax works with lists (proper or improper), vectors and
all types of maps.
 
  (list &as a b c) (list 1 2 3)
 
binds A to 1, B to 2, C to 3 and LIST to (1 2 3).
 
Similarly:
 
  (bounds &as beg . end) (cons 1 2)
 
binds BEG to 1, END to 2 and BOUNDS to (1 . 2).
 
  (items &as first . rest) (list 1 2 3)
 
binds FIRST to 1, REST to (2 3) and ITEMS to (1 2 3)
 
  [vect &as _ b c] [1 2 3]
 
binds B to 2, C to 3 and VECT to [1 2 3] (_ avoids binding as usual).
 
  (plist &as &plist :b b) (list :a 1 :b 2 :c 3)
 
binds B to 2 and PLIST to (:a 1 :b 2 :c 3).  Same for &alist and &hash.
 
This is especially useful when we want to capture the result of a
computation and destructure at the same time.  Consider the
form (function-returning-complex-structure) returning a list of
two vectors with two items each.  We want to capture this entire
result and pass it to another computation, but at the same time
we want to get the second item from each vector.  We can achieve
it with pattern
 
  (result &as [_ a] [_ b]) (function-returning-complex-structure)
 
Note: Clojure programmers may know this feature as the \":as
binding\".  The difference is that we put the &as at the front
because we need to support improper list binding."
  (declare (debug ([&or (&rest [&or (sexp form) sexp])
                        (vector [&rest [sexp form]])]
                   body))
           (indent 1))
  (if (vectorp varlist)
      `(let* ,(dash--match (aref varlist 0) (aref varlist 1))
         ,@body)
    (let* ((varlist (dash--normalize-let-varlist varlist))
           (inputs (--map-indexed (list (make-symbol (format "input%d" it-index)) (cadr it)) varlist))
           (new-varlist (--map (list (caar it) (cadr it)) (-zip varlist inputs))))
      `(let ,inputs
         (-let* ,new-varlist ,@body)))))
 
(defmacro -lambda (match-form &rest body)
  "Return a lambda which destructures its input as MATCH-FORM and executes BODY.
 
Note that you have to enclose the MATCH-FORM in a pair of parens,
such that:
 
  (-lambda (x) body)
  (-lambda (x y ...) body)
 
has the usual semantics of `lambda'.  Furthermore, these get
translated into normal lambda, so there is no performance
penalty.
 
See `-let' for the description of destructuring mechanism."
  (declare (doc-string 2) (indent defun)
           (debug (&define sexp
                           [&optional stringp]
                           [&optional ("interactive" interactive)]
                           def-body)))
  (cond
   ((not (consp match-form))
    (signal 'wrong-type-argument "match-form must be a list"))
   ;; no destructuring, so just return regular lambda to make things faster
   ((-all? 'symbolp match-form)
    `(lambda ,match-form ,@body))
   (t
    (let* ((inputs (--map-indexed (list it (make-symbol (format "input%d" it-index))) match-form)))
      ;; TODO: because inputs to the lambda are evaluated only once,
      ;; -let* need not to create the extra bindings to ensure that.
      ;; We should find a way to optimize that.  Not critical however.
      `(lambda ,(--map (cadr it) inputs)
         (-let* ,inputs ,@body))))))
 
(defmacro -setq (&rest forms)
  "Bind each MATCH-FORM to the value of its VAL.
 
MATCH-FORM destructuring is done according to the rules of `-let'.
 
This macro allows you to bind multiple variables by destructuring
the value, so for example:
 
  (-setq (a b) x
         (&plist :c c) plist)
 
expands roughly speaking to the following code
 
  (setq a (car x)
        b (cadr x)
        c (plist-get plist :c))
 
Care is taken to only evaluate each VAL once so that in case of
multiple assignments it does not cause unexpected side effects.
 
\(fn [MATCH-FORM VAL]...)"
  (declare (debug (&rest sexp form))
           (indent 1))
  (when (= (mod (length forms) 2) 1)
    (error "Odd number of arguments"))
  (let* ((forms-and-sources
          ;; First get all the necessary mappings with all the
          ;; intermediate bindings.
          (-map (lambda (x) (dash--match (car x) (cadr x)))
                (-partition 2 forms)))
         ;; To preserve the logic of dynamic scoping we must ensure
         ;; that we `setq' the variables outside of the `let*' form
         ;; which holds the destructured intermediate values.  For
         ;; this we generate for each variable a placeholder which is
         ;; bound to (lexically) the result of the destructuring.
         ;; Then outside of the helper `let*' form we bind all the
         ;; original variables to their respective placeholders.
         ;; TODO: There is a lot of room for possible optimization,
         ;; for start playing with `special-variable-p' to eliminate
         ;; unnecessary re-binding.
         (variables-to-placeholders
          (-mapcat
           (lambda (bindings)
             (-map
              (lambda (binding)
                (let ((var (car binding)))
                  (list var (make-symbol (concat "--dash-binding-" (symbol-name var) "--")))))
              (--filter (not (string-prefix-p "--" (symbol-name (car it)))) bindings)))
           forms-and-sources)))
    `(let ,(-map 'cadr variables-to-placeholders)
       (let* ,(-flatten-n 1 forms-and-sources)
         (setq ,@(-flatten (-map 'reverse variables-to-placeholders))))
       (setq ,@(-flatten variables-to-placeholders)))))
 
(defmacro -if-let* (vars-vals then &rest else)
  "If all VALS evaluate to true, bind them to their corresponding
VARS and do THEN, otherwise do ELSE. VARS-VALS should be a list
of (VAR VAL) pairs.
 
Note: binding is done according to `-let*'.  VALS are evaluated
sequentially, and evaluation stops after the first nil VAL is
encountered."
  (declare (debug ((&rest (sexp form)) form body))
           (indent 2))
  (->> vars-vals
       (--mapcat (dash--match (car it) (cadr it)))
       (--reduce-r-from
        (let ((var (car it))
              (val (cadr it)))
          `(let ((,var ,val))
             (if ,var ,acc ,@else)))
        then)))
 
(defmacro -if-let (var-val then &rest else)
  "If VAL evaluates to non-nil, bind it to VAR and do THEN,
otherwise do ELSE.
 
Note: binding is done according to `-let'.
 
\(fn (VAR VAL) THEN &rest ELSE)"
  (declare (debug ((sexp form) form body))
           (indent 2))
  `(-if-let* (,var-val) ,then ,@else))
 
(defmacro --if-let (val then &rest else)
  "If VAL evaluates to non-nil, bind it to symbol `it' and do THEN,
otherwise do ELSE."
  (declare (debug (form form body))
           (indent 2))
  `(-if-let (it ,val) ,then ,@else))
 
(defmacro -when-let* (vars-vals &rest body)
  "If all VALS evaluate to true, bind them to their corresponding
VARS and execute body. VARS-VALS should be a list of (VAR VAL)
pairs.
 
Note: binding is done according to `-let*'.  VALS are evaluated
sequentially, and evaluation stops after the first nil VAL is
encountered."
  (declare (debug ((&rest (sexp form)) body))
           (indent 1))
  `(-if-let* ,vars-vals (progn ,@body)))
 
(defmacro -when-let (var-val &rest body)
  "If VAL evaluates to non-nil, bind it to VAR and execute body.
 
Note: binding is done according to `-let'.
 
\(fn (VAR VAL) &rest BODY)"
  (declare (debug ((sexp form) body))
           (indent 1))
  `(-if-let ,var-val (progn ,@body)))
 
(defmacro --when-let (val &rest body)
  "If VAL evaluates to non-nil, bind it to symbol `it' and
execute body."
  (declare (debug (form body))
           (indent 1))
  `(--if-let ,val (progn ,@body)))
 
(defvar -compare-fn nil
  "Tests for equality use this function or `equal' if this is nil.
It should only be set using dynamic scope with a let, like:
 
  (let ((-compare-fn #\\='=)) (-union numbers1 numbers2 numbers3)")
 
(defun -distinct (list)
  "Return a new list with all duplicates removed.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil.
 
Alias: `-uniq'"
  (let (result)
    (--each list (unless (-contains? result it) (!cons it result)))
    (nreverse result)))
 
(defalias '-uniq '-distinct)
 
(defun -union (list list2)
  "Return a new list containing the elements of LIST and elements of LIST2 that are not in LIST.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  ;; We fall back to iteration implementation if the comparison
  ;; function isn't one of `eq', `eql' or `equal'.
  (let* ((result (reverse list))
         ;; TODO: get rid of this dynamic variable, pass it as an
         ;; argument instead.
         (-compare-fn (if (bound-and-true-p -compare-fn)
                          -compare-fn
                        'equal)))
    (if (memq -compare-fn '(eq eql equal))
        (let ((ht (make-hash-table :test -compare-fn)))
          (--each list (puthash it t ht))
          (--each list2 (unless (gethash it ht) (!cons it result))))
      (--each list2 (unless (-contains? result it) (!cons it result))))
    (nreverse result)))
 
(defun -intersection (list list2)
  "Return a new list containing only the elements that are members of both LIST and LIST2.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  (--filter (-contains? list2 it) list))
 
(defun -difference (list list2)
  "Return a new list with only the members of LIST that are not in LIST2.
The test for equality is done with `equal',
or with `-compare-fn' if that's non-nil."
  (--filter (not (-contains? list2 it)) list))
 
(defun -powerset (list)
  "Return the power set of LIST."
  (if (null list) '(())
    (let ((last (-powerset (cdr list))))
      (append (mapcar (lambda (x) (cons (car list) x)) last)
              last))))
 
(defun -permutations (list)
  "Return the permutations of LIST."
  (if (null list) '(())
    (apply #'append
           (mapcar (lambda (x)
                     (mapcar (lambda (perm) (cons x perm))
                             (-permutations (remove x list))))
                   list))))
 
(defun -inits (list)
  "Return all prefixes of LIST."
  (nreverse (-map 'reverse (-tails (nreverse list)))))
 
(defun -tails (list)
  "Return all suffixes of LIST"
  (-reductions-r-from 'cons nil list))
 
(defun -common-prefix (&rest lists)
  "Return the longest common prefix of LISTS."
  (declare (pure t) (side-effect-free t))
  (--reduce (--take-while (and acc (equal (pop acc) it)) it)
            lists))
 
(defun -common-suffix (&rest lists)
  "Return the longest common suffix of LISTS."
  (nreverse (apply #'-common-prefix (mapcar #'reverse lists))))
 
(defun -contains? (list element)
  "Return non-nil if LIST contains ELEMENT.
 
The test for equality is done with `equal', or with `-compare-fn'
if that's non-nil.
 
Alias: `-contains-p'"
  (not
   (null
    (cond
     ((null -compare-fn)    (member element list))
     ((eq -compare-fn 'eq)  (memq element list))
     ((eq -compare-fn 'eql) (memql element list))
     (t
      (let ((lst list))
        (while (and lst
                    (not (funcall -compare-fn element (car lst))))
          (setq lst (cdr lst)))
        lst))))))
 
(defalias '-contains-p '-contains?)
 
(defun -same-items? (list list2)
  "Return true if LIST and LIST2 has the same items.
 
The order of the elements in the lists does not matter.
 
Alias: `-same-items-p'"
  (let ((length-a (length list))
        (length-b (length list2)))
    (and
     (= length-a length-b)
     (= length-a (length (-intersection list list2))))))
 
(defalias '-same-items-p '-same-items?)
 
(defun -is-prefix? (prefix list)
  "Return non-nil if PREFIX is prefix of LIST.
 
Alias: `-is-prefix-p'"
  (declare (pure t) (side-effect-free t))
  (--each-while list (equal (car prefix) it)
    (!cdr prefix))
  (not prefix))
 
(defun -is-suffix? (suffix list)
  "Return non-nil if SUFFIX is suffix of LIST.
 
Alias: `-is-suffix-p'"
  (declare (pure t) (side-effect-free t))
  (-is-prefix? (reverse suffix) (reverse list)))
 
(defun -is-infix? (infix list)
  "Return non-nil if INFIX is infix of LIST.
 
This operation runs in O(n^2) time
 
Alias: `-is-infix-p'"
  (declare (pure t) (side-effect-free t))
  (let (done)
    (while (and (not done) list)
      (setq done (-is-prefix? infix list))
      (!cdr list))
    done))
 
(defalias '-is-prefix-p '-is-prefix?)
(defalias '-is-suffix-p '-is-suffix?)
(defalias '-is-infix-p '-is-infix?)
 
(defun -sort (comparator list)
  "Sort LIST, stably, comparing elements using COMPARATOR.
Return the sorted list.  LIST is NOT modified by side effects.
COMPARATOR is called with two elements of LIST, and should return non-nil
if the first element should sort before the second."
  (sort (copy-sequence list) comparator))
 
(defmacro --sort (form list)
  "Anaphoric form of `-sort'."
  (declare (debug (form form)))
  `(-sort (lambda (it other) ,form) ,list))
 
(defun -list (&rest args)
  "Return a list with ARGS.
 
If first item of ARGS is already a list, simply return ARGS.  If
not, return a list with ARGS as elements."
  (declare (pure t) (side-effect-free t))
  (let ((arg (car args)))
    (if (listp arg) arg args)))
 
(defun -repeat (n x)
  "Return a list with X repeated N times.
Return nil if N is less than 1."
  (declare (pure t) (side-effect-free t))
  (let (ret)
    (--dotimes n (!cons x ret))
    ret))
 
(defun -sum (list)
  "Return the sum of LIST."
  (declare (pure t) (side-effect-free t))
  (apply '+ list))
 
(defun -running-sum (list)
  "Return a list with running sums of items in LIST.
 
LIST must be non-empty."
  (declare (pure t) (side-effect-free t))
  (unless (consp list)
    (error "LIST must be non-empty"))
  (-reductions '+ list))
 
(defun -product (list)
  "Return the product of LIST."
  (declare (pure t) (side-effect-free t))
  (apply '* list))
 
(defun -running-product (list)
  "Return a list with running products of items in LIST.
 
LIST must be non-empty."
  (declare (pure t) (side-effect-free t))
  (unless (consp list)
    (error "LIST must be non-empty"))
  (-reductions '* list))
 
(defun -max (list)
  "Return the largest value from LIST of numbers or markers."
  (declare (pure t) (side-effect-free t))
  (apply 'max list))
 
(defun -min (list)
  "Return the smallest value from LIST of numbers or markers."
  (declare (pure t) (side-effect-free t))
  (apply 'min list))
 
(defun -max-by (comparator list)
  "Take a comparison function COMPARATOR and a LIST and return
the greatest element of the list by the comparison function.
 
See also combinator `-on' which can transform the values before
comparing them."
  (--reduce (if (funcall comparator it acc) it acc) list))
 
(defun -min-by (comparator list)
  "Take a comparison function COMPARATOR and a LIST and return
the least element of the list by the comparison function.
 
See also combinator `-on' which can transform the values before
comparing them."
  (--reduce (if (funcall comparator it acc) acc it) list))
 
(defmacro --max-by (form list)
  "Anaphoric version of `-max-by'.
 
The items for the comparator form are exposed as \"it\" and \"other\"."
  (declare (debug (form form)))
  `(-max-by (lambda (it other) ,form) ,list))
 
(defmacro --min-by (form list)
  "Anaphoric version of `-min-by'.
 
The items for the comparator form are exposed as \"it\" and \"other\"."
  (declare (debug (form form)))
  `(-min-by (lambda (it other) ,form) ,list))
 
(defun -iterate (fun init n)
  "Return a list of iterated applications of FUN to INIT.
 
This means a list of form:
 
  (init (fun init) (fun (fun init)) ...)
 
N is the length of the returned list."
  (if (= n 0) nil
    (let ((r (list init)))
      (--dotimes (1- n)
        (push (funcall fun (car r)) r))
      (nreverse r))))
 
(defun -fix (fn list)
  "Compute the (least) fixpoint of FN with initial input LIST.
 
FN is called at least once, results are compared with `equal'."
  (let ((re (funcall fn list)))
    (while (not (equal list re))
      (setq list re)
      (setq re (funcall fn re)))
    re))
 
(defmacro --fix (form list)
  "Anaphoric form of `-fix'."
  `(-fix (lambda (it) ,form) ,list))
 
(defun -unfold (fun seed)
  "Build a list from SEED using FUN.
 
This is \"dual\" operation to `-reduce-r': while -reduce-r
consumes a list to produce a single value, `-unfold' takes a
seed value and builds a (potentially infinite!) list.
 
FUN should return `nil' to stop the generating process, or a
cons (A . B), where A will be prepended to the result and B is
the new seed."
  (let ((last (funcall fun seed)) r)
    (while last
      (push (car last) r)
      (setq last (funcall fun (cdr last))))
    (nreverse r)))
 
(defmacro --unfold (form seed)
  "Anaphoric version of `-unfold'."
  (declare (debug (form form)))
  `(-unfold (lambda (it) ,form) ,seed))
 
(defun -cons-pair? (con)
  "Return non-nil if CON is true cons pair.
That is (A . B) where B is not a list."
  (declare (pure t) (side-effect-free t))
  (and (listp con)
       (not (listp (cdr con)))))
 
(defun -cons-to-list (con)
  "Convert a cons pair to a list with `car' and `cdr' of the pair respectively."
  (declare (pure t) (side-effect-free t))
  (list (car con) (cdr con)))
 
(defun -value-to-list (val)
  "Convert a value to a list.
 
If the value is a cons pair, make a list with two elements, `car'
and `cdr' of the pair respectively.
 
If the value is anything else, wrap it in a list."
  (declare (pure t) (side-effect-free t))
  (cond
   ((-cons-pair? val) (-cons-to-list val))
   (t (list val))))
 
(defun -tree-mapreduce-from (fn folder init-value tree)
  "Apply FN to each element of TREE, and make a list of the results.
If elements of TREE are lists themselves, apply FN recursively to
elements of these nested lists.
 
Then reduce the resulting lists using FOLDER and initial value
INIT-VALUE. See `-reduce-r-from'.
 
This is the same as calling `-tree-reduce-from' after `-tree-map'
but is twice as fast as it only traverse the structure once."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (-reduce-r-from folder init-value (mapcar (lambda (x) (-tree-mapreduce-from fn folder init-value x)) tree)))
   (t (funcall fn tree))))
 
(defmacro --tree-mapreduce-from (form folder init-value tree)
  "Anaphoric form of `-tree-mapreduce-from'."
  (declare (debug (form form form form)))
  `(-tree-mapreduce-from (lambda (it) ,form) (lambda (it acc) ,folder) ,init-value ,tree))
 
(defun -tree-mapreduce (fn folder tree)
  "Apply FN to each element of TREE, and make a list of the results.
If elements of TREE are lists themselves, apply FN recursively to
elements of these nested lists.
 
Then reduce the resulting lists using FOLDER and initial value
INIT-VALUE. See `-reduce-r-from'.
 
This is the same as calling `-tree-reduce' after `-tree-map'
but is twice as fast as it only traverse the structure once."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (-reduce-r folder (mapcar (lambda (x) (-tree-mapreduce fn folder x)) tree)))
   (t (funcall fn tree))))
 
(defmacro --tree-mapreduce (form folder tree)
  "Anaphoric form of `-tree-mapreduce'."
  (declare (debug (form form form)))
  `(-tree-mapreduce (lambda (it) ,form) (lambda (it acc) ,folder) ,tree))
 
(defun -tree-map (fn tree)
  "Apply FN to each element of TREE while preserving the tree structure."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) (funcall fn tree))
   ((listp tree)
    (mapcar (lambda (x) (-tree-map fn x)) tree))
   (t (funcall fn tree))))
 
(defmacro --tree-map (form tree)
  "Anaphoric form of `-tree-map'."
  (declare (debug (form form)))
  `(-tree-map (lambda (it) ,form) ,tree))
 
(defun -tree-reduce-from (fn init-value tree)
  "Use FN to reduce elements of list TREE.
If elements of TREE are lists themselves, apply the reduction recursively.
 
FN is first applied to INIT-VALUE and first element of the list,
then on this result and second element from the list etc.
 
The initial value is ignored on cons pairs as they always contain
two elements."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) tree)
   ((listp tree)
    (-reduce-r-from fn init-value (mapcar (lambda (x) (-tree-reduce-from fn init-value x)) tree)))
   (t tree)))
 
(defmacro --tree-reduce-from (form init-value tree)
  "Anaphoric form of `-tree-reduce-from'."
  (declare (debug (form form form)))
  `(-tree-reduce-from (lambda (it acc) ,form) ,init-value ,tree))
 
(defun -tree-reduce (fn tree)
  "Use FN to reduce elements of list TREE.
If elements of TREE are lists themselves, apply the reduction recursively.
 
FN is first applied to first element of the list and second
element, then on this result and third element from the list etc.
 
See `-reduce-r' for how exactly are lists of zero or one element handled."
  (cond
   ((not tree) nil)
   ((-cons-pair? tree) tree)
   ((listp tree)
    (-reduce-r fn (mapcar (lambda (x) (-tree-reduce fn x)) tree)))
   (t tree)))
 
(defmacro --tree-reduce (form tree)
  "Anaphoric form of `-tree-reduce'."
  (declare (debug (form form)))
  `(-tree-reduce (lambda (it acc) ,form) ,tree))
 
(defun -tree-map-nodes (pred fun tree)
  "Call FUN on each node of TREE that satisfies PRED.
 
If PRED returns nil, continue descending down this node.  If PRED
returns non-nil, apply FUN to this node and do not descend
further."
  (if (funcall pred tree)
      (funcall fun tree)
    (if (and (listp tree)
             (not (-cons-pair? tree)))
        (-map (lambda (x) (-tree-map-nodes pred fun x)) tree)
      tree)))
 
(defmacro --tree-map-nodes (pred form tree)
  "Anaphoric form of `-tree-map-nodes'."
  `(-tree-map-nodes (lambda (it) ,pred) (lambda (it) ,form) ,tree))
 
(defun -tree-seq (branch children tree)
  "Return a sequence of the nodes in TREE, in depth-first search order.
 
BRANCH is a predicate of one argument that returns non-nil if the
passed argument is a branch, that is, a node that can have children.
 
CHILDREN is a function of one argument that returns the children
of the passed branch node.
 
Non-branch nodes are simply copied."
  (cons tree
        (when (funcall branch tree)
          (-mapcat (lambda (x) (-tree-seq branch children x))
                   (funcall children tree)))))
 
(defmacro --tree-seq (branch children tree)
  "Anaphoric form of `-tree-seq'."
  `(-tree-seq (lambda (it) ,branch) (lambda (it) ,children) ,tree))
 
(defun -clone (list)
  "Create a deep copy of LIST.
The new list has the same elements and structure but all cons are
replaced with new ones.  This is useful when you need to clone a
structure such as plist or alist."
  (declare (pure t) (side-effect-free t))
  (-tree-map 'identity list))
 
(defun dash-enable-font-lock ()
  "Add syntax highlighting to dash functions, macros and magic values."
  (eval-after-load 'lisp-mode
    '(progn
       (let ((new-keywords '(
                             "!cons"
                             "!cdr"
                             "-each"
                             "--each"
                             "-each-indexed"
                             "--each-indexed"
                             "-each-while"
                             "--each-while"
                             "-doto"
                             "-dotimes"
                             "--dotimes"
                             "-map"
                             "--map"
                             "-reduce-from"
                             "--reduce-from"
                             "-reduce"
                             "--reduce"
                             "-reduce-r-from"
                             "--reduce-r-from"
                             "-reduce-r"
                             "--reduce-r"
                             "-reductions-from"
                             "-reductions-r-from"
                             "-reductions"
                             "-reductions-r"
                             "-filter"
                             "--filter"
                             "-select"
                             "--select"
                             "-remove"
                             "--remove"
                             "-reject"
                             "--reject"
                             "-remove-first"
                             "--remove-first"
                             "-reject-first"
                             "--reject-first"
                             "-remove-last"
                             "--remove-last"
                             "-reject-last"
                             "--reject-last"
                             "-remove-item"
                             "-non-nil"
                             "-keep"
                             "--keep"
                             "-map-indexed"
                             "--map-indexed"
                             "-splice"
                             "--splice"
                             "-splice-list"
                             "--splice-list"
                             "-map-when"
                             "--map-when"
                             "-replace-where"
                             "--replace-where"
                             "-map-first"
                             "--map-first"
                             "-map-last"
                             "--map-last"
                             "-replace"
                             "-replace-first"
                             "-replace-last"
                             "-flatten"
                             "-flatten-n"
                             "-concat"
                             "-mapcat"
                             "--mapcat"
                             "-copy"
                             "-cons*"
                             "-snoc"
                             "-first"
                             "--first"
                             "-find"
                             "--find"
                             "-some"
                             "--some"
                             "-any"
                             "--any"
                             "-last"
                             "--last"
                             "-first-item"
                             "-second-item"
                             "-third-item"
                             "-fourth-item"
                             "-fifth-item"
                             "-last-item"
                             "-butlast"
                             "-count"
                             "--count"
                             "-any?"
                             "--any?"
                             "-some?"
                             "--some?"
                             "-any-p"
                             "--any-p"
                             "-some-p"
                             "--some-p"
                             "-some->"
                             "-some->>"
                             "-some-->"
                             "-all?"
                             "-all-p"
                             "--all?"
                             "--all-p"
                             "-every?"
                             "--every?"
                             "-all-p"
                             "--all-p"
                             "-every-p"
                             "--every-p"
                             "-none?"
                             "--none?"
                             "-none-p"
                             "--none-p"
                             "-only-some?"
                             "--only-some?"
                             "-only-some-p"
                             "--only-some-p"
                             "-slice"
                             "-take"
                             "-drop"
                             "-drop-last"
                             "-take-last"
                             "-take-while"
                             "--take-while"
                             "-drop-while"
                             "--drop-while"
                             "-split-at"
                             "-rotate"
                             "-insert-at"
                             "-replace-at"
                             "-update-at"
                             "--update-at"
                             "-remove-at"
                             "-remove-at-indices"
                             "-split-with"
                             "--split-with"
                             "-split-on"
                             "-split-when"
                             "--split-when"
                             "-separate"
                             "--separate"
                             "-partition-all-in-steps"
                             "-partition-in-steps"
                             "-partition-all"
                             "-partition"
                             "-partition-after-item"
                             "-partition-after-pred"
                             "-partition-before-item"
                             "-partition-before-pred"
                             "-partition-by"
                             "--partition-by"
                             "-partition-by-header"
                             "--partition-by-header"
                             "-group-by"
                             "--group-by"
                             "-interpose"
                             "-interleave"
                             "-unzip"
                             "-zip-with"
                             "--zip-with"
                             "-zip"
                             "-zip-fill"
                             "-zip-pair"
                             "-cycle"
                             "-pad"
                             "-annotate"
                             "--annotate"
                             "-table"
                             "-table-flat"
                             "-partial"
                             "-elem-index"
                             "-elem-indices"
                             "-find-indices"
                             "--find-indices"
                             "-find-index"
                             "--find-index"
                             "-find-last-index"
                             "--find-last-index"
                             "-select-by-indices"
                             "-select-columns"
                             "-select-column"
                             "-grade-up"
                             "-grade-down"
                             "->"
                             "->>"
                             "-->"
                             "-as->"
                             "-when-let"
                             "-when-let*"
                             "--when-let"
                             "-if-let"
                             "-if-let*"
                             "--if-let"
                             "-let*"
                             "-let"
                             "-lambda"
                             "-distinct"
                             "-uniq"
                             "-union"
                             "-intersection"
                             "-difference"
                             "-powerset"
                             "-permutations"
                             "-inits"
                             "-tails"
                             "-common-prefix"
                             "-common-suffix"
                             "-contains?"
                             "-contains-p"
                             "-same-items?"
                             "-same-items-p"
                             "-is-prefix-p"
                             "-is-prefix?"
                             "-is-suffix-p"
                             "-is-suffix?"
                             "-is-infix-p"
                             "-is-infix?"
                             "-sort"
                             "--sort"
                             "-list"
                             "-repeat"
                             "-sum"
                             "-running-sum"
                             "-product"
                             "-running-product"
                             "-max"
                             "-min"
                             "-max-by"
                             "--max-by"
                             "-min-by"
                             "--min-by"
                             "-iterate"
                             "--iterate"
                             "-fix"
                             "--fix"
                             "-unfold"
                             "--unfold"
                             "-cons-pair?"
                             "-cons-to-list"
                             "-value-to-list"
                             "-tree-mapreduce-from"
                             "--tree-mapreduce-from"
                             "-tree-mapreduce"
                             "--tree-mapreduce"
                             "-tree-map"
                             "--tree-map"
                             "-tree-reduce-from"
                             "--tree-reduce-from"
                             "-tree-reduce"
                             "--tree-reduce"
                             "-tree-seq"
                             "--tree-seq"
                             "-tree-map-nodes"
                             "--tree-map-nodes"
                             "-clone"
                             "-rpartial"
                             "-juxt"
                             "-applify"
                             "-on"
                             "-flip"
                             "-const"
                             "-cut"
                             "-orfn"
                             "-andfn"
                             "-iteratefn"
                             "-fixfn"
                             "-prodfn"
                             ))
             (special-variables '(
                                  "it"
                                  "it-index"
                                  "acc"
                                  "other"
                                  )))
         (font-lock-add-keywords 'emacs-lisp-mode `((,(concat "\\_<" (regexp-opt special-variables 'paren) "\\_>")
                                                     1 font-lock-variable-name-face)) 'append)
         (font-lock-add-keywords 'emacs-lisp-mode `((,(concat "(\\s-*" (regexp-opt new-keywords 'paren) "\\_>")
                                                     1 font-lock-keyword-face)) 'append))
       (--each (buffer-list)
         (with-current-buffer it
           (when (and (eq major-mode 'emacs-lisp-mode)
                      (boundp 'font-lock-mode)
                      font-lock-mode)
             (font-lock-refresh-defaults)))))))
 
(provide 'dash)
;;; dash.el ends here